Machine Protection System

- Run Permit System (Software Based)(1 second)
 - » Coordinates machine mode changes.
 - Scans IOC configurations for Software Configuration errors.
 - MPS interface for masking equipment inputs.
- Beam Permit System (Next beam pulse, (20 microseconds))
 - Latches fault conditions until fault clears and Operator resets condition. BEAM_PERMIT_LINK carrier interrupted and inhibits beam through front end devices.
- **Fast Protect System (20 microseconds)**
 - Inhibits beam for duration of macro pulse by disabling FAST PERMIT LINK carrier to the front end. Restores Fast Protect link for next pulse if fault restored to normal.

Beam Permit System

- Concentrates Permit Inputs
- Inhibits carrier link to disable beam Operator Reset required to continue beam operations
- Devices bypassed by Key or PLC
- Inputs disabled by machine mode (event link)
- Equipment maintained in locked racks
- Documentation control of changes
- System verification after changes

Beam Permit Inputs

- Power supply Enabled status
- Magnet Current Comparators
- Valve Status
- RF Status
- Target Status
- Dump Status
- Timing System Status

- Vacuum Status
- Loss monitors
- Current monitors
- HARP
- SEM
- Beam Position Monitors
- Beam Loss Accounting system

Fast Protect System

- ALARA Pulse Width Modulation
- Concentrates Permit Inputs
- Inhibits carrier link to disable Beam
- Inputs:
 - » Loss Monitors
 - Software trip points, bypass
 - » Beam position monitors
 - Software trip points, bypass
 - » RF Low level Controls

Automated Checkout Procedure

- Goal Complete system checkout within 4 hours
- Check at sensor level when practical
 - » Inject current through toroid
 - » Current surge with high voltage ON (Loss monitors)
- Database (For each MPS input)
 - » MPS:Test_Signal
 - » MPS:Reset
- Run Permit Sequencer Code
 - » For each PPS area
 - » Caput MPS:Trip_Signal START
 - » Verify Front End Shutdown
 - » Caput MPS:Reset_Signal DONE

Machine Protection System Links

SNS Integrated Control System

MPS Layout – Loops confined by Machine Mode

MPS Carrier Cable Delays

HEBT, Ring, RTBT MPS Layout considerations

Linac Dump Mode

- Some HEBT devices, Ldump devices
- » Injection Dump Mode
 - HEBT, Some Ring Devices, and Idump devices
- » Extraction Dump Modes
 - Ring, Some RTBT Devices, and Xdump devices
- » Target Mode
 - Ring, RTBT, and Target Devices

MPS Chassis Inputs (Per System)

- Eight (8) positive true, fail-safe beam permit inputs.
- Eight (8) positive true, fail-safe fast protect inputs.
- One (1) 8 MHz carrier input, on-off modulation; beam permit link.
- One (1) 3 MHz carrier input, on-off modulation; fast protect link.
- One (1) 16 MHz carrier, bi-phase-mark modulated input event link.
- One (1) 10 MHz carrier, bi-phase-mark modulated input Real Time Data Link (RTDL).
- One (1) positive true, fail-safe PLC card bypass.

MPS Module Outputs (Per System)

- One (1) 8 MHz carrier output, on-off modulation; beam permit link.
- One (1) 3 MHz carrier output, on-off modulation; fast protect link.
- Two (2) positive true, fail-safe, level output, local beam permit status.
- Two (2) positive true, fail-safe, level output, local fast protect status.
- One (1) positive true, fail-safe, level output, EVENT_LINK input status.

MPS Hardware 3 Component

- MVME PPC 2100 Uses PMC slot for Digital IO. Contains Digital Logic, Fault Timers, Interface Registers
- PMCspan Motorola PMC expansion board. Used to add 2nd and 3rd MPS systems if required.
- P2 VME Transition Module Routes P2 connections to 50 pin SCSI connector(s)
- MPS Interface Chassis Interfaces MPS input signals, Carrier links, RTDL and Event Links to the PMC card for processing.

MPS Hardware

MPS hardware – 3 system configuration

MPS Input Circuit - PLC

MPS Input Circuit - IOC

IOC Digital OP circuit

VMIC 2330 Digital OP module

Figure 2. Typical Output Configuration

MPS Input Channel (fast protect or beam permit)

MPS Shutoff Equipment

- Fast Protect
 - » RF drive to RFQ
- Beam Permit
 - » 65 KV Power supply
 - » RFQ Power Supply
- Run Permit
 - » Fast Protect
 - » Beam Permit
- (Beam Abort Extraction Kickers)
- (Event System (Abort signal))

Ring MPS Devices

- Vacuum System
- Extraction Kickers
- Collimators Motion, Temperature
- Stripper Foils Integrity, Motion
- Timing System Status
- Ring RF System
- DCCT current sensors
- Integrating current monitors

Vacuum System MPS inputs

- SNS
- Valve Controls (~1 msec response from time valve starts to close)
- Vacuum Pumps (Slow Response, seconds)
- Vacuum Levels Beam can be allowed to run for different periods of time depending on the vacuum levels. Will coordinate with loss monitors.
 - » 10⁻⁶ ASAP
 - » 10⁻⁷? Many instabilities
 - » 10⁻⁸? Limited Running
 - » 10⁻⁹ OK
- USE SNS PLC Programming Standards
- MPS Test Functions programmed in to PLC code
- PLC can SUM MPS inputs within the same Machine Mode Zone

Extraction Kicker issues

- Kicker Charging Power Supply Status
- Kicker Ready Status pulse to pulse MPS input triggered by Tzero Event?
- False firing Abort ASAP
- Beam Abort, Fault ASAP verses waiting until "Normal" extraction time? Separate hardware input triggers? Different Events?
- 1 Kicker off line
- Extraction timing Defined from Tzero "Event" on event link

SNS System Timing Cycle

- A. Start of Cycle (Also End of Cycle)
 - Previous pulse information sent out (RTDL)
 - Information about next pulse sent out (RTDL)
 - Time Stamp sent out (RTDL)

B. Information Events

- Mode information sent out (Event link) One of 32 predefined beam modes, indicating pulse type and beam line (dump) in use.
- Synchronous Events 1 Hz, 10 Hz, Snapshot
- C. RTDL data valid Hardware can load registers with data from the RTDL
- D. Tzero All time stamp registers loaded, fast counters initialized. Parameters for the next pulse are frozen.
- E. Beam Permit Faults, Fast Protect aborts, and beam veto's can come at any time.
- F. Beam inject Injection cycle starts
- G. Injection complete or Beam off.
- H. Extraction From 10 turns to 1000's of turns after injection cycle complete, nominally 10 turns.
- I. Subsystem specific events for subsystem synchronous triggers, trouble shooting, etc.

Kicker Abort Signals, Event link and/or Hard wired

Ring Collimator MPS Inputs

- Temperature sensors
- Water Flow ?
- Normal loss monitors? (Dynamic range OK?)
- Motion (Drop to lower beam power?)
- Motion out of range (LVDT's?)
- Limit Switches

Injection Foil

- Foil Failure
 - » Beam Loss Monitors
 - » HARPS
 - » Integrating Current Monitor
 - » Peak Current Monitor
 - » Foil Video monitor
- Foil Motion
 - » Low power mode required?
 - » LVDT Motion range available
 - » Limit Switches

Ring RF MPS Considerations

- RF Power Supply
- RF Cavity Field Error Signals
- Reflected Power
- RF Phase Error monitoring
- RF Beam phase monitoring?
- RF Power Ramping (Amplitude modulation?)

